
AGNI: A Multi-threadedMiddlewarefor DistributedScripting

M.Ranganathan,MarcBednarek,FernandPorsand
DougMontgomery

InternetworkingTechnologiesGroup
NationalInstituteof StandardsandTechnology
100BureauDrive, Gaithersburg, MD 20899.�

mranga,bednarek,pors,dougm� @antd.nist.gov

Abstract

We presentthedesignof a AGNI - a Tcl 8.1 basedMiddle-
ware for building reactive, extensible, reconfigurable dis-
tributedsystems,baseduponanabstractionwecall Mobile
Streams.Usingour system,a distributed,event-drivenap-
plication canbescriptedfroma singlepoint of control and
dynamicallyextendedand re-configuredwhile it is in exe-
cution. Our systemis suitablefor building a wide variety
of applications;for example, distributedtest,conferencing
andcontrol-orientedapplications.We illustrate the useof
our systembypresentingexampleapplications.

1 Intr oduction

Ourwork is motivatedby acoupleof observationsaboutthe
evolving natureof distributedapplicationsandtheir imple-
mentationenvironments.First, the structureof distributed
software is undergoing somechanges.We areseeingthe
growth of new typesfederated,looselycoupleddistributed
applicationsthat have several commonrequirementsand
characteristicsincluding: (1)Event-driven Ar chitecture:
A singledistributedapplicationmay be composedof sep-
aratecomponentsthat all work togetherin a coordinated
fashion. Suchapplicationsareevent-orientedin naturein
that we can think of changesin the overall stateof the
global applicationas being triggeredby discretechanges
in thestateof eventprocessingat eachof thecomponents.
(2)Heterogeneity: The componentsmust run on a vari-
etyof differentplatformswith varyinginherentcapabilities
andenvironments.In addition,someof componentsthem-
selvesarereusedpiecesof softwareimplementedin a vari-

ety of languagesandenvironments.Despiteall of this het-
erogeneity, it is desirableto be ableto designanddevelop
distributedapplicationsin a commonportableframework.
(3)Mobility: Theability to dynamicallymove codeto and
amongtheseplatformsduringapplicationexecutiongreatly
enhancestheability to deploy andreconfigurecomplex sys-
tems.(4)Reliability: Theseextensionandreconfiguration
capabilitiescanbe usedto constructreliablesystemsthat
distribute systemstatein waysthat enablegracefulfailure
recovery andadaptation.(5)Security: In suchhighly dy-
namicsystems,the ability to secureandcontrol resources
at several levels (global application,singlenode,individ-
ual process)is necessaryto insurethe correctbehavior of
applicationsandtheviability of systemsthatsupportthem.

Our secondobservation is that while many systemsshare
thecharacteristicsmentionedabove, thevarietyof compo-
nenttypesandplatformsthat mustbe accommodatedpre-
cludea languagespecificor applicationspecificsolutions.
InsteadwesuggestthataMiddlewareapproachbasedupon
Tcl scriptingtechnologyprovidesthemostflexibility in the
designof suchcompositeapplications.Tcl is great”com-
ponentglue”. Its simplified structureandextensibility are
strengthswhenassemblingapplicationsfrom disparate,het-
erogeneoussoftwarecomponents� .

This paperis aboutAGNI - a multi-threadedTcl 8.1 based
Middlewarefor scriptingreconfigurableevent-orienteddis-
tributedsystems.AGNI builds upon the proven scripting
powerof Tcl byaddingextensionsfor anabstractionwecall
Mobile Streams. Mobile Streams(MStreams) are a gen-
eralizationof simplemobile codetechnologies(e.g. Java
Applets)thatprovidecodedistributionandcommunication
betweenclientsandservers.MStreamsextendtoday’ssim-
plenotionsof codemobility by incorporatingstatemobility,
decentralizedpeer-to-peercommunicationsandthe ability
to extendandreconfiguredistributedapplicationduringex-
ecutionwhile preservingbehavioral guarantees.At ahigher
level,MStreamsallow theseparationof thelogicalstructure

�
Indeed,thusspakeJohnOusterhout: ”If youlookatfinancialservices,

a lot of whatthey do is try andtie togetherall of thedifferentsystemsthat
needto be coordinatedwith traders,not to mentionthe front and back
office. It’s a tremendousintegration effort, and that’s exactly what Tcl
doeswonderfully...”.

1



of a distributedapplicationfrom thephysicalplacementof
components.Our modelof codemobility allows themap-
ping of logical applicationstructureto physicalresources
(e.g. machinesandprocesses)to occurdynamicallyat run
timeandchangeduringthecourseof theactive life-time of
theglobalapplication.

The rest of this paperis organizedas follows: Section2
presentstheMStreamsprogrammingmodelandsystemar-
chitectureandpresentsanintroductoryexample.Section3
givesabrief overview of AGNI, ourprototypeimplementa-
tion of MStreamsMiddleware. Section4 presentsa sim-
ulation environment for designingapplicationsusing our
system.Section5 presentssomemorecomprehensive ap-
plicationsthat we have built on our system. In Section6
we compareandcontrastour work with thoseof others.In
Section7 we concludeandpresentour futureplansfor this
project.

2 Mobile Streams

In thissectionwepresentourprogrammingmodelandpro-
vide a small, introductoryexample.We begin by introduc-
ing a few termsthatareusedthroughtherestof thepaper.

A Mobile Stream (MStream) is a mobile communication
endpointin a distributed system. The closestanalogyto
an MStreamis a mobile active mailbox. As in a mailbox,
an MStreamhasa globally uniquename. MStreamspro-
vide a FIFO orderingguarantee,ensuringthat messages
areconsumedat theMStreamin thesameorderasthey are
sentto it. Usuallymailboxesarestationary. MStreams,on
the otherhand,have the ability to move from Site to Site
dynamically. Usually mailboxesarepassive. In contrast,
messagearrival at anMStreampotentiallytriggersthecon-
currentexecutionof messageconsumptioneventhandlers(
AppendHandlers ) registeredwith theMStream,whichcan
processthe messageand,in turn, send(append) messages
to otherMStreams.

An MStreamhasa globally uniquename.We refer to any
processorthatsupportsanMStreamexecutionenvironment
as a Site. A distributed systemconsistsof one or more
Sites. A collectionof Sitesparticipatinga distributedap-
plication is called a Session. EachSessionhasa distin-
guished,trusted,reliableSitecalledaSessionLeader. Each
Site is assigneda Location Identifier that uniquely identi-
fiesit within a givenSession.New Sitesmaybeaddedand
removed from the Sessionat any time. An MStreammay
be locatedon, or movedto any Site in the Sessionthatal-

MStream MStream MStream MStream

SESSION

SITESITE

Handler

Handler

Handler

Handler

AGENT AGENT

Handler

Handler

AGENT

Handler

Handler

Handler

AGENT

Handler

Handler

Handler

AGENT

Handler

Handler

Handler

AGENT AGENT

Handler Handler

briefcase

Thread

Interp

Thread
Interp

briefcase
briefcase

Thread

Interp

briefcase briefcase

briefcasebriefcase

Thread Thread

Thread Thread

Interp Interp

InterpInterp

Figure 1: Logical organizationof the System. A Ses-
sionconsistsof multiple participatingSites.EachSitecan
housemultiple MStreams.EachMStreamcanhave multi-
ple Agentsthat canregisterHandlersfor differentEvents.
MStreamscanmove from Site to Site. WhenanMStream
moves,all its registeredhandlersmovewith it.

lows it to residethere.MStreamsmaybeopenedlikesock-
etsandmessagessent(appended)to them. Multiple Event
Handlers(Handlers) may be dynamicallyattached,to and
detachedfrom, anMStream.Handlersareinvokedon dis-
cretechangesin systemstatesuchasmessagedelivery(ap-
pend),MStreamrelocations,new Handlerattachmentsnew
Site additionsandSite failures. We refer to thesediscrete
changesin systemstateasEvents.Handlersareattachedby
Agentswhich provideanexecutionenvironmentandthread
for the Handlersthat they attach. (i.e. an Agent specifies
a collectionof Handlersthatthatall usethesamethreadof
executionand interpreter.) Logically, the systemis struc-
turedasshown in Figure1.

Handlerscancommunicatewith eachotherby appending
messagesto MStreams.Thesemessagesaredeliveredasyn-
chronouslyto the registeredAppendHandlersin the same
orderthat they wereissued� . A messageis deliveredat an
MStreamwhenthe AppendHandlersof the MStreamhas
beenactivatedfor executionasa resultof the message.A
messageis consumedwhenall theAppendHandlersof the
MStreamthat areactivatedasa resultof its delivery have
completedexecution. By asynchronousdeliverywe mean
that the senderdoesnot block until the messagehasbeen
consumedin orderto continueits execution.

�
Synchronousdelivery of messagesis supportedasanoptionbut asyn-

chronousdelivery is expectedto bethecommoncase.



Site 1 Site 2

foo
Append 

Handler

Append

Handler

stream_open foo
External Input

stream_append foo"Hello world" ;#a

a

b

register_agent bar {} {

              puts $argv

          }
            on_stream_relocation {

                   set my_loc [stream_location]
                   puts "I am at $my_loc" ;#d

           }
}

            

bar

stream_move bar 2

      stream_open bar
       on_stream_append {
            stream_append bar $argv ;#b

        }
}

         on_stream_append {

              stream_relocate 1 ;#c

stream_move foo 1

stream_create bar
stream_create foo

register_agent foo {} {

Figure 2: A simple auto-reconfiguringreactive system
scriptedfrom asinglepoint of control.

A distributedapplicationis constructedby first specifying
the communicationend-pointsas MStreamsand then at-
tachingAgentsto thoseend-points,thatin turn attachHan-
dlersfor specificEvents.A givenMStreammayhave mul-
tiple AgentsandeachAgentmayregisterHandlersfor dif-
ferentEvents,but eachAgent mayhave only oneHandler
for a givenEvent. Whenan Event occurs,the appropriate
Handlersin eachAgentareconcurrentlyandindependently
invokedwith appropriatearguments.Handlersaretypically
registeredon Agent initialization andmay be dynamically
changedduringexecution.

An applicationbuilt usingourMiddleware,maybethought
of asconsistingof two distinct parts- an active part anda
reactive part. The reactive part consistsof MStreamsand
Handlers.Theactivepartor ShelllivesoutsidetheMiddle-
wareanddrivesit. A Shellmayconnectto theMiddleware
andissuerequestsandmay exit at any time. The reactive
partis persistent.

Figure2 shows anexamplescript that instantiatesa simple
distributedsystemthat residesat Sites1 and2. A message
is sentto theMStreamcalledfoo by thestream append

commandissuedvia theexternalShell(#ain Figure2) . The
MStreamcalled foo receives the message”Hello world”
and sendsit to the MStreamcalled bar (#b in Figure 2)
which outputsthe messagevia its handlerandthenmoves
MStreambar to Site 1 (#c in Figure2). The arrival han-
dlersrun whenthe MStreambar arrivesat Site1, printing
the string ”I am at 1” to the consoleat Site 1 (#d in Fig-
ure2).

In Figure 2 the script labelled”External Input” in is the
Shell and MStreamsand their registeredhandlersare the
reactiveparts.

2.1 Dynamic Extensionand Re-configuration

An applicationbuilt on our Middleware may be dynami-
cally extendedandre-configuredin severalwayswhile it is
in execution(i.e.,while therearependingun-deliveredmes-
sages).First,anAgentcandynamicallychangethehandlers
it hasregisteredfor a given Event. Second,new Agents
may be addedand existing Agentsremoved for an exist-
ing MStream.Third, new MStreamsmaybeaddedandre-
moved. Fourth,new Sitesmaybeaddedandremoved,and
finally, MStreamsmaybemoveddynamicallyfrom Siteto
Site.

WhenanMStreammovesfrom oneSiteto another, it (log-
ically) movesthe codeof all of the Agentsattachedto it
to thenew Sitealongwith whatever statethey have placed
in their briefcase structures.We sayan Agent ”visits” a
Sitewhenits MStreamvisits theSite. WhenanAgentfirst
visits a Site,its initialization codeexecutesthereandwhen
anAgent is killed, its (optional)FinalizationHandler runs
at eachlocation that hasbeenvisited by it. Agent state
(consistingof globalstatevariablesandcode)is replicated
at eachsite that it visits until the Agent is destroyed. On
Agentdestruction,theHandlersthatit hasregisteredarede-
registered,andtheinterpreterandstatevariablesarefreedat
eachSitethat it hasvisited. We assumethatSitesmayfail
or disconnectduring execution. Site failure doesnot im-
ply destructionof the MStreamsthat residethere. Failure
processingis describedin Section2.3.

The Agent’s briefcasespecifiesa consistency requirement
for moves.WhenanAgentmovesfrom Siteto Siteonly the
elementsin thebriefcasearecopiedfrom thesourceexecu-
tion environmentto thetarget.Theremainderof theglobal
stateremainsunaffected(andcached)at the sourcesite of
themove. Onsuccessfulcompletionof a move,theArrival
Handlersof theMStreamareinvokedat thenew Sitewhere
theMStreamhasmoved.



HandlersmaymovetheMStreamto whichthey areattached
andalsomaymoveotherMStreamsaroundaswell ascreate
anddestroy MStreams.Handlersmayalsoexit - destroying
the Agent in which they arehousedandmay alsodestroy
otherAgents. Suchactionsmay alsobe initiated from an
externalShell.Re-configurationmaybecontainedby using
appropriatepolicy handlers.

All changesin the configurationof an MStreamsuchas
MStreammovement,new Agentadditionanddeletion,and
MStreamdestructionare deferreduntil the time whenno
Handlersof the MStreamare executing. We call this the
AtomicHandlerExecutionModel . Messagedeliveryorder
is preserveddespitedynamicreconfiguration,allowingboth
thesenderandreceiver to bein motionwhile asynchronous
messagesarependingdelivery.

Applicationsbuilt usingMobile Streamscanbe extended
from multiple pointsof control; any handleror Shell that
hasacquiredan openMStreamhandle,canattemptto re-
configureor extendthereactivepartof thesystemandthese
actionscanoccurconcurrently. While this addsgreatflex-
ibility , it also raisesseveral securityand stability issues.
We provide a meansof restrictingsystemreconfiguration
andextensionusingcontrol Eventsthat caninvoke policy
Handlers. Thesepolicy Handlersmay be registeredonly
by privilegedAgentsasdescribedbelow. We follow a dis-
cretionarycontrol philosophyby providing just the mech-
anismandleaving thepolicy up to individual applications.
Controlsmay be placedvia policy Handlersat a session-
wide level, site-wide level and at the level of individual
MStreamsfor varioussecurity-relevantEvents.

In summary, our securitymechanismsarebasedon thefol-
lowing threeprinciples:

Session-widecontrol: We havebuilt mechanismsto place
session-widecontrols over extensionand reconfiguration
via a centralizedSessionLeaderMStream.

Site-specificcontrol: Eachsitemayspecifysecuritypoli-
ciesvia a SiteController MStream. Site-specificpolicies
may be usedto grantor deny MStreamentry to a site and
to sand-boxtheincomingMStreamhandler’scodeby using
safe-Tclmechanisms.

Stream-specificcontrol: TheMStreamitself is regardedas
anextensibleentityto whichAgentscanbeattachedandde-
tached.It cancarryits own policy Handlersto allow or dis-
allow suchactions,asdeterminedby its StreamController
Agent.

Our securityimplementationworks as follows: Messages
areclassifiedasdatamessagesandcontrolmessages.Data
messagesare delivereddirectly to the MStream. Control
messagesare messagesthat can changethe configuration
of the distributed system. Theseare routedfirst through
the trustedintermediarySessionLeaderthat canacceptor
deny theseactionsvia its policy handlers,andthenthrough
theSiteControllerwhich mayagainacceptor deny theac-
tion andfinally throughtheStreamControllerfor MStream-
specific actions. We invite the interestedreaderto look
at [9] for moredetails.

Themechanismsdescribedabovepermitusto build highly
flexible andextensibledistributedreactive systemsthatare
able to extend and re-configurethemselves, and also to
placeconstraintson how the systemcanbe re-configured
andextended.

2.2 MessageDelivery

Within our Middleware framework, point-to-point mes-
sagesaredeliveredusingan in-ordersender-reliabledeliv-
eryschemebuilt ontopof UDP. All messagesareconsumed
in the order they are issuedby the senderdespitefailures
andreconfigurations.Theseorderinganddelivery guaran-
teesmake it simplerto designdistributedsystems.

In our scheme,thesenderof themessageis responsiblefor
re-transmittingthe messageon timeout. We usea sliding-
window acknowledgementmechanismsimilar to thoseem-
ployed by TCP. The sendingSite buffers the messageand
computesa smoothedestimateof the expectedround-trip
time for theacknowledgmentto arrive from thereceiver. If
the acknowledgmentdoesnot arrive in the expectedtime,
the senderre-transmitsthe message.The senderkeepsa
window of unacknowledgedmessagesandcontrolsflow by
dynamicallyadjustingthewidth of this window depending
uponwhetheranACK wasreceivedin theexpectedtimeor
not. Thusfar, our descriptionis similar to themechanisms
employedby TCP. Wehaveimplementedourown protocol,
ratherthanjustuseTCP, becauseTCPdoesnotaddresscer-
tainconditionssuchasfailuresabovethetransportleveland
dynamicmovementof thecommunicatingend-points.

As previouslydescribed,anapplicationcanbedynamically
reconfiguredat any time with both thesenderandreceiver
moving. Whenmovementof an MStreamoccurs,a Loca-
tion Manager is informedof the new Site locationwhere
the MStreamwill reside. This information needsto be
propagatedto eachHandleror Shell that hasopenedthe
MStream.



Whenthe target of an Appendmoves,messagesthat have
not beenconsumedhave to be deliveredto the MStream
at the new Site. Thereare two designoptionsin dealing
with this problem- eitherforwardun-consumedmessages
from the old Site to the new Site or re-deliver from the
senderto thenew Site.Forwardingmessageshassomeneg-
ative implicationsfor reliability. If theSitefrom which the
MStreamis migratingdiesbeforebufferedmessageshave
beenforwardedto the new Site, thesemessageswill be
lost. Hence,we optedfor a sender-initiatedretransmission
scheme.Thesenderbuffersthemessageuntil it receivesno-
tification thatthehandlerhasrunandthemessagehasbeen
consumed,re-transmittingthemessageon time-out.

When an MStreammoves it takes variousstateinforma-
tion alongwith it. Clearly, thereis an implicit movement
of handlercodeand Agent executionstate(via the brief-
case),but in addition,the MStreamtakesa statevectorof
sequencenumbers.Thereis a slot in this vector for each
”alive” MStreamthattheMStreamin motionhassentmes-
sagesto or received messagesfrom. Eachslot containsa
sent-receivedpair of integersindicatingthe next sequence
numberto besentor receivedfrom a givenMStream.This
allows the messagingcodeto determinehow to stampthe
next outgoingmessageor whatsequencenumbershouldbe
consumednext from a givensendingMStream.

2.3 Handling Failures

A failure occurswhen the Site where the MStream re-
sidesfails or disconnectsfrom the SessionLeader. Each
MStreamis assignedareliableFailureManagerSite.When
a such a failure occurseachof the MStreamslocatedat
the Site that hasfailed are implicitly relocatedto its Fail-
ure ManagerSite whereits Failure Handlersare invoked.
Failuresmayoccurandbehandledat any time - including
during systemconfigurationandreconfiguration.Pending
messagesaredeliveredin order, despitefailures. A mes-
sageis considered”consumed”only afterall of theAppend
handlersexecuteat thetargetMStreamfor thatmessage.(If
noneexist themessageis discardedat therecipient).If the
Site housingan MStreamshouldfail or disconnectwhile
a messageis beingconsumedor while therearemessages
that have beenbufferedandnot yet delivered,re-delivery
is attemptedat the MStreamFailure Manager. To ensure
in-order delivery in the presenceof failures,the message
is discardedat the senderonly after the AppendHandlers
at the receiver have completedexecutionandthe ACK for
the messagehasbeenreceived by the sender. This is dif-
ferentfrom TCPwherethereceiverACKs themessageim-
mediatelyafterreception(andnot afterconsumptionaswe

require). After a failure hasoccurredat the site wherean
MStreamresides,a failure recovery protocol is executed
thatre-synchronizessequencenumbersbetweencommuni-
catingMStreamsthat involve thefailedMStream.Eachof
thepotentialsendersis queriedto obtainthenext expected
sequencenumber. FIFO orderingcanbethusbepreserved
despitethefailure.

3 Implementation

We have implementedthe Mobile Streamsmodel in a
toolkit wecall AGNI � . AGNI is amulti-threadedTCL ex-
tensionthatusesthethread-safetyfeaturesof TCL 8.1 and
consistsof roughly 23,000lines of C++ code. In this sec-
tion, we give highlightsof the implementationsomeinitial
performanceresults.

Each workstation that wishes to participate in the dis-
tributedsystemrunsa copy of an Agent Daemon. A dis-
tinguishedAgent Daemonhousesthe SessionLeaderand
is in chargeof acceptingor rejectingnew AgentDaemons.
This Daemonalsoservesasa LocationManagerandFail-
ureManagerfor all MStreamsin theSession.EachAgent
Daemonhasauniqueidentifierthatit obtainsfrom theSes-
sion Leader. EachAgent Daemonmaintainsa connection
with theSessionLeaderAgentDaemon.Conceptually, the
arrangementis asshown in thefigure3.

EachAgent hasa TCL interpreterandthreadof execution
that is usedby the Handlersthat it registers. Thesere-
sourcesare createdfor an Agent at a Site on its the first
visit to the Site andremainsallocateduntil the Agent (or
theMStreamto which it is attached)is destroyed. Whena
new Agent is addedto anMStream,its codeis propagated
and initialized on the first move of the Agent to a previ-
ouslyunvisitedSite,andremainscachedthereuntil it is de-
stroyed.ProvidedanMStreamhasvisitedaSitepreviously,
andno new Agentshave beenattachedsinceits last visit,
MStreammovementsimplyconsistsof moving thestatein-
formation in the briefcase(seeSection2) of eachAgent
of theMStreamto thenew Siteandconcurrentlyinvoking
eachon streamarrival Handler.

Exceptfor the casewhenthe MStreamis co-locatedwith
the Site from where the messageoriginates,all control
Events destinedfor an MStream(e.g. creation, reloca-
tion, new agentattachment)aredeliveredthroughtheSes-
sion LeaderAgent Daemonvia the TCP connectionthat

�
”AGentsatNIst” (alsoSanskritfor fire)



Reliable UDP-based protocol

TCP Connection for control messages

Agent Daemon
Agent Daemon Agent Daemon

SESSION LEADER

Figure 3: EachSite runs an Agent Daemonthat is con-
nectedto theSessionLeader. TheAgentDaemonis Multi-
threadedwith one threadper agent. The SessionLeader
maintainslocationandcacheinformation.

eachAgentDaemonmaintainswith it. TheSessionLeader
Agent Daemonalso actsasa LocationManager, keeping
trackof whereeachMStreamis locatedandis henceableto
re-directmessagesto thelocationof theMStream.Sending
all control Eventsthroughthe SessionLeaderis a simple
meansof achieving a globalorderingon controlmessages.
Thenegativeaspectof thisdesignis thattheSessionLeader
hasthe potentialof becominga bottleneck. However, we
expectthenumberof controlmessagesto bemuchsmaller
thanthe numberof datamessages(appends)processedby
theMStreamandhencedo not considerthis a seriouslim-
itation at present.In our future work, we plan to alleviate
thisproblemby replicationof theSessionLeader. TheSes-
sion LeaderDaemonalso managesthe tracking informa-
tion for the codeandstatecachedescribedpreviously and
is chargeof propagatingcodeto previously unvisitedloca-
tions. As all Agentcodeis registeredat theSessionLeader
andpropagatedfrom there,this simplifies the trust model
to pair-wiserelationshipsbetweeneachsiteandtheSession
Leader. providedall partiestrusttheSessionLeader.

Appendeddata messagesare delivered to the destina-
tion MStreamdirectly without going throughthe Session
Leader. Thus the SessionLeaderis not a bottleneckfor
datamessagedelivery.

4 An In-Situ Simulation Envir onment

Estimatingthedetailedbehavior andperformanceof a dis-
tributedsystemis hard. Thereareseveral degreesof vari-
ability andtheinteractionbetweenphysicaleffectsis often
difficult determine.Further, bugs- especiallytiming related
onescanbequitedifficult to reproducein physicaltest-bed

environments. In order to addresstheseissues,we have
developedan in-situ simulationenvironmentthat enables
tuning,debuggingandperformanceestimationof both the
AGNI runtimesystemandapplications.

Our approach system wraps a simulated environment
aroundtheactualAGNI systemandapplicationcodeusing
the CSIM [11] simulationlibrary. We replacethreadcre-
ations,locking andmessagesendsandreceiveswith sim-
ulatedversionsof thesebut leave the restof the codeun-
modified. We have usedthe simulationfor debuggingand
performancetuningthesystemaswell asfor testingtheper-
formanceof applicationsbuilt on top of our system. Fig-
ure 4 shows the simulationcodefor the introductoryap-
plication presentedin section2. As canbe seenfrom the
example,the simulationand the actualsystemscript look
quite similar, with the exceptionof the parametersat the
top andsomenew commandsto createsimulatedprocesses
andshells.Thesimulationrunsasasingleprocesswhereas
theactualsystemconsistsof multiple communicatingpro-
cesses.Thesimulationcontainsvarious”tweaking” param-
etersthat have to be adjustedto matchreality. Thesepa-
rametersincludethemessagelatency, packet droppercent-
ageandsimulateddelayscorrespondingto codeexecution
time. Thegoalin tuningthesimulationis to adjustthesepa-
rametersto make thesimulationmatchthebehavior of the
real systemfor the quantitiesof interest. Presumably, we
canmatchtheseover somesimple scenariosand then try
morecomplex ones,having someassuranceof thevalidity
of results. Onecanget a goodideaaboutwhat delaysare
significantby looking at the gprof executiontracefor the
actualsystem.

A simulationis, however, only goodto theextentit matches
reality. Fitting thesimulationto reality involvesseveralcy-
clesof adjustingperformanceparametersandre-testingthe
simulation.Thereis a largedegreeof variability in theper-
formanceof theactualsystem.We aim to make theoutput
of the model fall within onestandarddeviation of the ac-
tual systemfor the quantitiesof interest. To test if this is
feasible,we testedsomesimplescenarios.In boththe real
andsimulatedenvironments,we emulatedpacket drop by
randomlydroppingpacketsat the receiver. The quantities
of interestthat we would like to matcharethe throughput
of packetsandthenumberof packetssentby thesenderfor
eachpacketconsumedby thereceiver(packetratio). While
we arestill in theprocessof tuningthesimulation,our ini-
tial resultsareencouraging.Figure5 shows the message
countperformanceof therealsystemandsimulatedsystem
for two fixedend-points.



set drop  10
set m0 [ machine m0 ] ;#1
set m1 [ machine m1 ]
set e0 [ create_engine $m0 -d $drop ] ;#2
set e1 [ create_engine $m1 -d $drop ]
sim_set_send_latency m0  .0005 ;#3
sim_set_send_latency m1  .0005
sim_set_execution_time "Tcl_FindHashEntry" 0.000015 ;#4
sim_set_execution_time "Tcl_NextHashEntry" 0.000015
sim_set_execution_time "Arrival" 0.000015       ;#5
create_shell $e0 {
  stream_create foo
  stream_create bar
  register_agent foo {} {
        stream_open bar
        on_stream_append {
            stream_append bar $argv
        }
   
  }
  register_agent bar {} {
        on_stream_append {
                puts "$argv"
                stream_relocate 1
        }
        on_stream_relocation {
             puts "I am at [stream_location] at [sim_clock]"
             conclude_sim
        }
  }
  stream_move foo 0
  stream_move bar 1
  stream_append foo "bar"
}
sim 100000

Figure4: Simulationscriptfor introductoryexample.

0

1

2

3

4

5

0 5 10 15 20 25 30

R
at

io
 m

es
sa

ge
s 

se
nt

/m
es

sa
ge

s 
co

ns
um

ed

�

Packet drop percentage

real
real top standard deviation

real bottom standard deviation
simulated

Figure5: Simulatedversusactualpacketratiofor fixedend-
points.

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45 50

T
im

e 
pe

r 
se

nt
 m

es
sa

ge
 (

m
ic

ro
se

co
nd

s)

Packet Drop Percentage

real
real top standard deviation

real bottom standard deviation
simulated

Figure 6: Simulatedversusactualmessageconsumption
time for fixedend-points.

5 Application Sketches

In building applicationsusingourinfrastructureweadopted
a problem-drivenapproachin mappingAGNI capabilities
to prototypesolutions. For example,we startedwith the
assumptionthat we would usemobility only to the extent
that it simplified the applicationdesignor enhancedper-
formancein somefashion,ratherthanadoptthe approach
thatmobility is a featurewhoseutility neededto bedemon-
strated.Theremainderof thissectionoutlinesthedesignof
two applications.Theinterestedreaderis referredto [9] for
additionalexamples.

5.1 Distributed Data Combination

Consideradistributedexperimentwheredatais beinggath-
eredat multiple sitesanda queryinvolvespicking up data
itemsfrom eachlocationandcombiningthedatato produce
a compositeresult. Suchanapplicationmaybe structured
asamasterserver front endandamultipleslavebackends.
The front endgetsthequeryandfarmsit out to to eachof
the participatingsites. The slave sitesprocesssub-queries
locally, gatheringresultsandreturningthemto the master
site which thenreturnsthe combinedresult to the remote
caller. If thecombinationoperationis aninvolvedonesuch
asa databasejoin, this couldplaceanexcessive burdenon
themaster. Alternatively, this operationcouldbeoffloaded
to the client or one of the slaves. When the query is re-
ceivedby themaster, it createsanMStreamat theclient or
oneof theslavesto receive datafrom thedatasourcesand
andprocessthejoin.

If the data can be shippedincrementallyfrom the data
source,andresultscanbeproducedincrementally, theop-
erationthat receivesresultscanbemoveddynamicallybe-
tweentheslavesandtheclientdependingonavailableband-
width and other machineresources.Suchtechniquesare
useful for optimizing dynamicquery execution in client-
server databasesystems.Theorderingguaranteeprovided
by MStreamsensuresthat the incrementaljoin resultsare
received in orderby the join operatorandtheoutputoper-
atorregardlessof thephysicallocationof thejoin operator.
In particularthejoin operatorcouldbedynamicallymoving
betweensitesasthe join is beingprocessed.Severalposi-
tioning strategiesmay be consideredin dynamicallymov-
ing the join operatoraround. Someof thesestrategiesare
consideredin [7] whereweconsiderthemorecomplex case
of ajoin treeandadapttheoperatorplacementto bandwidth
variations. Figure7 shows the overall organizationof the
system.



Mobile Join Op

Output Op

Query

Sub-queries

Partial results

+ Select

Data access

+ Select

Data access

+ Select
Data accessMaster

Client

Servers

Figure7: Adaptive databasequeryexecution.Thejoin op-
eratormaybedynamicallyrepositionedwhile thejoin is in
progress.

5.2 Collaborative Annotation of Experimental
Data

Althoughwe have describedour tool primarily asa means
of scriptingdistributedapplications,thereis norequirement
thattheMStreamsresideonphysicallyseparatedmachines.
In sectionwedescribeSMAT - A SynchronousMultimedia
AnnotationTool. SMAT wasdesignedto bepartof ascien-
tific collaboratoryfor usein a roboticarcweldingresearch
projectat NIST [13].

The scenariois as follows: Data is producedby sensors
in variouspartsof a weldingsystemandweldingcell con-
troller. Data from thesesensorscanhave differentmedia
types- for example,video, audio and discretelysampled
currentand voltage. The primary functional requirement
for SMAT wasto developa tool thatsupportsthecapability
synchronizeandplay back the capturedmulti-mediadata
aftertheweld is completeandprovidesa meansto stopthe
playbackat any point in time andenterannotations.After
theannotationsessionis complete,theenteredannotations
areuploadedto anserver for otherusersto view andanno-
tate.Duringsubsequentsessions,themediaandtheannota-
tionsareplayedbackin synchronousfashion.Annotations
appearin theannotationwindow correspondingto therela-
tive timeat which they wereentered.

A secondaryrequirementfor SMAT was to supportreal-
time collaborationin the tool. Using this capability, users
mayeffectively have partialcontrolover eachother’s tools
in orderto sharethesameview of themultimediadata.

To meettheserequirements,SMAT wasdesignedasa con-
trol andintegrationframework thatexploitsexistingtoolsto

play specificmediatypes. We startedwith the assumption
thateachtool to becontrolledexportsanAPI or mechanism
(suchasCOM) thatpermitsit to becontrolledfrom another
process. The tools are all tied togetherusing a common
control bus implementedusingMStreams.Theideaof the
busis muchthesameastheideaof abusin computerhard-
ware.Componentsaretied togetherby pluggingtheminto
the softwarebus in the samefashionascardsareplugged
into a hardwarebus. Thecomponentsin this caseareslave
processesthatplay the differentmultimediafiles. In order
to usesuchan approach,the interfacesto the tools under
controlmustbemadeuniform. To achieve this uniformity
we wrapa controllerscriptaroundeachtool. For example,
wecanuseXANIM asa tool thatplaysvideounderUNIX.
XANIM takesexternalinput via propertychangenotifica-
tionson anXWindow Property. If we usea Microsoft tool,
it mayexport COM interfacesfor externalcontrol. In gen-
eral,eachtool mayhave its own idiosyncrasiesfor external
communication.Weencapsulatethesevia asoftwaredriver
wrapperthat hidesthe communicationcomplexities from
the control layer andregistersstandardizedcallbackswith
the control layer. This is modeledafter a device driver in
an operatingsystemthat would register read, write, ioctl,
openandclosecallbacks.Thecallbacksin ourcaseinclude
a start interface,a stop interface,a quit interface,a timer
tick interfaceanda seekinterface. Theseget called from
thecontrollerat appropriatetimes. It is up to the driver to
communicatewith theslavetool if needbeoneachof these
calls. To enhanceusability, we needthe look andfeel of a
singletool ratherthanseveral individual tools. For this,we
useTk window embedding.Eachtool that hasa embed-
able top level window is embeddedin a commoncanvas.
Theoverall tool is controlledby theuservia a controlGUI
that alsosendseventsthroughthe control bus. The archi-
tectureis shown in Figure8.

Thereare several advantagesto structuringa tool in this
fashion:
Distrib uted Control Eachtool is controlledby a sepa-
rate AGNI Agent that implementsits driver. The driver
reactsto events that can be generatedfrom anywhere in
the distributed application. For example, the slider tool
can appendmessagesto the controller that re-distributes
theseeventsasseekeventsto eachof the tool drivers. If
the multimedia tools supportrandomseeks,they can re-
spondto suchseekrequestsand position their mediaap-
propriately, therebygiving theability to havebothreal-time
andmanuallycontrolledsynchronization.If we wantedto
sharethe slider, in a synchronouslycollaborative fashion,
this seekinput simply needsto originatefrom anotherma-
chineratherthanthe local slider. Thecontrol inputscould
alsocomefrom anothercollaborative environmentandin-



Std. Interf. Std. Interf. Std. Interf.

Tool Specific
Commands

GUI Output

Control
Demux.

Timer

GRAPH VIDEO

Global Controller MStream

MStream

Start Stop File...

Slider

Tool

Remote Control Input

Tool 
Controller

Tool 
Controller
MStream

Video

Tool

Graph
Tool

HTML

HTML Annotations

Driver
Tool 

Driver
Tool 

Driver
Tool 

Tool 
Controller
MStream

Figure8: SMAT: A compositeannotationtool with adistributedcontrolbus.Eachmediatypeis handledby aseparatetool
with its own driver. An MStream-basedevent-busis usedto tie togetherthetoolsandprovidea meansto selectively export
controls.

deedwehaveusedthisapproachto integratethetool in with
theTeamwaveclient [12].

Isolation of ComponentsEachtool runsin its own address
space.Thus,a misbehaving tool cannotbring down theap-
plication.Failuresareeasyto isolateandfix. Wecanutilize
off-the-shelftoolsfor mediahandlingandannotationwhen-
eversuchtoolsareavailable.For example,in ourWindows
NT versionof thetool, weusetheCOM IWebBrowser2 in-
terfacesto WindowsExploreranddriveit asanexternaltool
to allow us to browseannotations.We usetheCOM IDis-
patch interfaceto Microsoft Word to bring up an editor to
enterannotations.

Modularity and Extensibility: As all driversexport uni-
form interfaces,it is easyto addnew mediatypes.We sim-
ply build adriverto encapsulatetheinterfaceto thetool and
plug it into thebus.

A practicalissuethatarisesin thisdesignis how todealwith
cleanup.Whenthemain interfaceexits or is killed theen-
tire tool includingall its componentsshouldbeterminated.
To deal with this problem, we use the client attach and
client detach eventsfor which theSiteControllerMStream
mayregisterHandlers.Thesehandlersareexecutedwhena
client attachesor detachesfrom thedaemonat a givensite.
It canissuemessagesto theothertool controllersMStreams
to exit thetoolsthatthey control.

It may be a concernthat the decompositionof the system
into processesdegradesperformance.Our experiencewas
that degradationin performanceis not unacceptable.The
systemappearedto behave well even on a slow machine
(130MHz) runningwindowsNT.

We arealsoworking on a datacollectionfacility that will
monitor the system,gatherdataandpopulateftp reposito-



rieswith thedataafterexperimentsarecompleted.

6 RelatedWork

Tcl DP [10] is the most popularextensionfor distributed
scripting.Our first pointof comparisonis with this system.
In contrastto Tcl DP that is RPCoriented,our systemis
intendedasa platform to script distributedevent-oriented
applications.We rely on one-waymessagesto supportthis.
In Tcl DP, messagesareround-tripand the sendercannot
proceeduntil the recipienthascompletedprocessing.Our
systemcanalsosupportsynchronous(round-trip)messages
wherethesenderblocksuntil theappendhandlerat thetar-
getcompletesexecutionandhencewe cando thekindsof
thingsTcl DP is aimedat doing. However, we expectmost
applicationsbuilt usingour systemto beone-way message
oriented. It is interestingto note that in our system,we
canmovetheserver in responseto anRPCbeforethereply
comesbackto theclient.

Our framework and toolkit is relatedto several othersys-
temsthatsupportmobility. In contrastto otherresearchin
Mobile Agents,ourapproachhasbeento treatmobility and
Mobile Agenttechnologyasanenhancementto distributed
scriptingratherthanasameansof supportingdisconnected
operations.Consequently, we have concentratedon typical
distributedsystemsissuessuchas location tracking,mes-
sagepassingandfailure handling. This distinguishesand
separatesourwork fromtheotherwork in thisarea.Tcl pro-
videsan ideal platform for building mobile agentsystems
and therehave beena few suchsystemsthat have gained
popularity. Agent Tcl [3] supportsa generalizedmobility
modelwheremigrationis allowedat arbitrarypointsin ex-
ecutionof themobilecode.Thisprovidesgreaterflexibility
and perhapsa more naturalprogrammingmodel than we
provide. However, this approachsuffers from a few short-
comings.First, it requiresmodificationof thecoreTcl dis-
tribution - somethingthat is difficult to keepup with over
the long run. Unrestrictedmobility makessupportof fault
toleranceandreconfigurationharderto achieve. In contrast,
oursystemrestrictsmobility andotherstatechangesto han-
dler boundariesand treatshandlersasatomicunits of ex-
ecution. By providing sucha cleanexecutionmodel, we
simplify the systemdesignand implementationwhile in-
creasingslightly theburdenof thedeveloperusingour sys-
tem.Previously, wehaddevelopedasystemcalledSumatra
thatsupportsunrestrictedmobility for Java applicationsby
modificationof the Java Virtual Machine[8] andmany of
thedesigndecisionsin thissystemareinfluencedby theex-
periencegainedin the Sumatraexercise.TACOMA [5] is

anotherTcl-basedmobile agentsystemthat adoptsa pro-
grammingmodelsimilar to ours. However, therearesome
basicdifferenceasoutlinedbelow.

In this work, we proposeddirect communication(reliable
messagepassing)betweenMobile Agents. In our system
on streamappend Handlers( analogousto ”Agents” in
other systems) passone-way messagesto eachother re-
liably ( via MStreams) rather than meetingto exchange
messages,using a blackboardor other RPC-like mecha-
nisms. Cabri et. al. [1] arguethat this is not sucha good
idea for several reasonswhich make sensein the context
of free-roamingdisconnectedagents. Our systemis ori-
entedtowardsbuilding re-configurabledistributedapplica-
tionsratherthansupportingfree-roamingautonomousenti-
tiesandhenceseveralof theirconcernsdo not apply.

Aglets [6], Voyager[2], andMole [14] areJava-basedsys-
tems that follow a programmingmodel similar to ours.
However, our systemdiffersfrom thesesystemsin thefol-
lowing importantways:(1) Our designphilosophyis to in-
corporatereconfigurationinto a distributed systembuild-
ing toolkit rather than supportdisconnectedoperationas
the fundamentaldesigngoal, (2) We have incorporateda
peer-to-peer reliable, resilient messagedelivery protocol
that noneof theseother systemsoffer and (3) We have a
meansof restrictingsystemre-configurationandextension
usingpolicy Handlersthat separateglobal (system-wide),
andlocal concerns.

Dynamicre-configurationof distributedsystemshasbeen
consideredby HofmeisterandPurtilo [4] usinga software
bus approach.Their systemsupportsdynamicchangesto
modules,geometryand structureof a distributed system.
However, failureprocessingandasynchronousmessagede-
liveryduringreconfigurationis not considered.

7 Conclusionsand Future Work

In this paperwe have presentedthe motivationanddesign
of a Middlewareframework that usesmobility to simplify
distributedscripting. We presentedexamplesto illustrate
theuseof oursystem.Oursystemmaybedownloadedfrom
from http://www.antd.nist.gov/itg/agni/.

Our plansfor extendingtheMiddlewareis concentratedin
threeareas. We will incorporatereliablemulticastprimi-
tivesin oursystemwherebyanMStreamcancommunicate
with a group of MStreams. As in the unicastcase,both
the senderandthe recipientscanbe in motion while mes-



sagesarebeingdelivered. Second,we intendto make our
locationtrackingschememorerobustandscalableby using
replicationandmulticast. Third, we will build persistence
at the locationmanagerso that the systemcanbe stopped
and restartedwithout loosing all the MStreamsand data.
Finally, we intendto continuebuilding applications- espe-
cially in the domainof mobile computinganddistributed
testing.

8 Acknowledgments

The authorsacknowledgeandappreciatethe contributions
of Virginie Schaal(NIST), Virginie Galtier (NIST), Lau-
rent Andrey ( LORIA, Fr.) andAnuragAcharya(UCSB)
to this project. We thank Kevin Mills, Mark Carsonand
CraigHuntof NIST, for readingthispaperandmakinguse-
ful suggestionsto improve its content,readabilityandpre-
sentation.

References

[1] G. Cabri,L. Leornardi,andF. Zambonelli. Coordinationin
mobileagentsystems.TechnicalReportDSI-97-24,Univer-
sita’ di Modena,October1997.

[2] Object Space Corp. Voyager white paper.
http://www.objectspace.com/voyager.

[3] Robert S. Gray. Agent Tcl: A flexible and secure
mobile-agent system. In Proceedingsof the Fourth
Annual Tcl/Tk Workshop - Monterey CA, July 1996.
http://www.cs.dartmouth.edu/agent/papers.html.

[4] ChristineR. HofmeisterandJamesM. Purtilo. Dynamicre-
configurationof distributedprograms.In 11th.International
Conferenceon DistributedComputingSystems, pages560–
571,1991.

[5] DagJohansen,RobbertvanRenesse,andFredB.Schnieder.
An introductionto theTACOMA distributedsystem.Techni-
calReport95-23,Universityof Tromso,Norway, June1995.
http://www.cs.uit.no/DOS/Tacoma/tacoma.webpages.

[6] Danny B. Langeand Mitsuru Oshima. Programmingand
DeployingJavaMobileAgentswithAglets. Addison-Wesley,
1998. ISBN 0-201-32582-9.

[7] M.Ranganathan,AnuragAcharya,andJoelSaltz. Adapting
to bandwidthvariationsin wide-areadataaccess.In Interna-
tional ConferenceOnDistributedComputingSystems, pages
498–506,May 1998.

[8] M. Ranganathan,AnuragAcharya,ShamikSharma,andJoel
Saltz. Network-awaremobileprograms.In USENIXWinter
TechnicalConference, jan1997.

[9] M. Ranganathan,V. Schaal,V. Galtier, andD. Montgomery.
Mobilestreams:A middlewarefor reconfigurabledistributed
scripting.In AgentSystemsAndArchitectures/MobileAgents
’99 (to appear), October1999.

[10] Brian Smith, Tibor Janosi, and Mike Perham. Tcl dp.
http://www.cs.cornell.edu/Info/Projects/zeno/Projects/Tcl-
DP.html.

[11] Mesquite Software. Csim-18 simulation library.
http://www.mesquite.com.

[12] Teamwave Software. Teamwave collaborative toolkit.
http://www.teamwave.com.

[13] Michelle Steves, Wo Chang, and Amy Knutilla. Sup-
porting Manufacturing Process Analysis and Trouble
Shooting with ACTS. In IEEE 8th International
Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE) , June 1999.
http://www.mel.nist.gov/msidstaff/steves.micky.html.

[14] Markus Straer, JoachimBaumann,and Fritz Hohl. Mole
– a Java basedmobile agent system. In 2nd ECOOP
Workshop on Mobile Object Systems, pages 28–35,
Linz, Austria, July 1996. http://www.informatik.uni-
stuttgart.de/ipvr/vs/Publications/1996-strasser-01.ps.gz.


